Fetal ECG Extraction from Maternal Abdominal ECG Using Neural Network

نویسندگان

  • Muhammad A. Hasan
  • Muhammad Ibn Ibrahimy
  • Mamun Bin Ibne Reaz
چکیده

FECG (Fetal ECG) signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during pregnancy and labor. The extraction and detection of the FECG signal from composite maternal abdominal signals with powerful and advance methodologies is becoming a very important requirement in fetal monitoring. The purpose of this paper is to illustrate the developed algorithms on FECG signal extraction from the abdominal ECG signal using Neural Network approach to provide efficient and effective ways of separating and understanding the FECG signal and its nature. The FECG signal was isolated from the abdominal signal by neural network approach with different learning constant value and momentum as well so that acceptable signal can be considered. According to the output it can be said that the algorithm is working satisfactory on high learning rate and low momentum value. The method appears to be exceedingly robust, correctly isolate the FECG signal from abdominal ECG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTELLIGENT TECHNIQUE OF CANCELING MATERNAL ECG IN FECG EXTRACTION

In this paper, we propose a technique of artificial intelligence called adaptive neuro fuzzy inference system (ANFIS) for canceling maternal electrocardiogram (MECG) in fetal electrocardiogram extraction (FECG).This technique is used to estimate the MECG present in the abdominal signal of a pregnant woman. The FECG is then extracted by subtracting the estimated MECG from the abdominal signal. P...

متن کامل

Separation of fetal electrocardiography (ECG) from composite ECG using adaptive linear neural network for fetal monitoring

The signal strength of the maternal ECG (MECG) is usually many times that of the fetal ECG (FECG). Separating FECG from abdominal ECG (AECG) is therefore always a challenge. Some multiple-lead algorithms use the thoracic MECG to cancel the MECG in the AECG to get FECG, though this is inconvenient for the patient during long-term monitoring. Hence, this paper describes an adaptive method to sepa...

متن کامل

A PCA/ICA based Fetal ECG Extraction from Mother Abdominal Recordings by Means of a Novel Data-driven Approach to Fetal ECG Quality Assessment

Background: Fetal electrocardiography is a developing field that provides valuable information on the fetal health during pregnancy. By early diagnosis and treatment of fetal heart problems, more survival chance is given to the infant.Objective: Here, we extract fetal ECG from maternal abdominal recordings and detect R-peaks in order to recognize fetal heart rate. On the next step, we find a be...

متن کامل

Extraction of Fetal QRS Complex from Abdominal ECG Signals

Background: Extraction of Fetal ECG signal from non-invasive abdominal ECG signal is an important clinical application. Fetal ECG signal provides significant and valuable information about the fetal heart growth and health condition. Objective: Abdominal signals are usually corrupted by high amplitude maternal ECG signals and often found superimposed with the Fetal ECG signal. Suppression of ma...

متن کامل

Sequential Total Variation Denoising for the Extraction of Fetal ECG from Single-Channel Maternal Abdominal ECG

Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JSEA

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2009